Search results for "Riemann theta functions"

showing 5 items of 5 documents

Degenerate Riemann theta functions, Fredholm and wronskian representations of the solutions to the KdV equation and the degenerate rational case

2021

International audience; We degenerate the finite gap solutions of the KdV equation from the general formulation given in terms of abelian functions when the gaps tend to points, to get solutions to the KdV equation given in terms of Fredholm determinants and wronskians. For this we establish a link between Riemann theta functions, Fredholm determinants and wronskians. This gives the bridge between the algebro-geometric approach and the Darboux dressing method.We construct also multi-parametric degenerate rational solutions of this equation.

KdV equationPure mathematicsGeneral Physics and AstronomyFredholm determinantTheta function01 natural sciencessymbols.namesakeWronskians[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Fredholm determinant0103 physical sciencesRiemann theta functions0101 mathematicsAbelian group010306 general physicsKorteweg–de Vries equationMathematical PhysicsMathematicsWronskianRiemann surface010102 general mathematicsDegenerate energy levelsRiemann hypothesisNonlinear Sciences::Exactly Solvable and Integrable SystemsRiemann surfacesymbolsGeometry and Topology
researchProduct

Deformations of third order Peregrine breather solutions of the NLS equation with four parameters

2013

In this paper, we give new solutions of the focusing NLS equation as a quotient of two determinants. This formulation gives in the case of the order 3, new deformations of the Peregrine breather with four parameters. This gives a very efficient procedure to construct families of quasi-rational solutions of the NLS equation and to describe the apparition of multi rogue waves. With this method, we construct the analytical expressions of deformations of the Peregrine breather of order N=3 depending on $4$ real parameters and plot different types of rogue waves.

NLS equationAkhmediev's solutions.Nonlinear Sciences::Exactly Solvable and Integrable Systems[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]WronskiansPeregrine breathers[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Riemann theta functionsAkhmediev's solutions[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Nonlinear Sciences::Pattern Formation and SolitonsFredholm determinants
researchProduct

Six-parameters deformations of fourth order Peregrine breather solutions of the NLS equation.

2013

We construct solutions of the focusing NLS equation as a quotient of two determinants. This formulation gives in the case of the order 4, new deformations of the Peregrine breather with 6 real parameters. We construct families of quasi-rational solutions of the NLS equation and describe the apparition of multi rogue waves. With this method, we construct the analytical expressions of deformations of the Peregrine breather of order 4 with 6 real parameters and plot different types of rogue waves.

NLS equationAkhmediev's solutions.Nonlinear Sciences::Exactly Solvable and Integrable Systemswronskians[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Fredohlm determinantsPeregrine breathers[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Riemann theta functionsAkhmediev's solutions[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Nonlinear Sciences::Pattern Formation and Solitons
researchProduct

Degenerate determinant representation of solutions of the NLS equation, higher Peregrine breathers and multi-rogue waves.

2012

We present a new representation of solutions of the focusing NLS equation as a quotient of two determinants. This work is based on a recent paper in which we have constructed a multi-parametric family of this equation in terms of wronskians. This formulation was written in terms of a limit involving a parameter. Here we give a very compact formulation without presence of a limit. This is a completely new result which gives a very efficient procedure to construct families of quasi-rational solutions of the NLS equation. With this method, we construct Peregrine breathers of orders N=4 to 7 and multi-rogue waves associated by deformation of parameters.

NLS equationNonlinear Sciences::Exactly Solvable and Integrable SystemsWronskians[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Peregrine breathersRogue waves[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Riemann theta functions[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Nonlinear Sciences::Pattern Formation and Solitonsfredholm determinantsAkhmediev's breathers
researchProduct

Determinant representation of NLS equation, Ninth Peregrine breather and multi-rogue waves

2012

This article is a continuation of a recent paper on the solutions of the focusing NLS equation. The representation in terms of a quotient of two determinants gives a very efficient method of determination of famous Peregrine breathers and its deformations. Here we construct Peregrine breathers of order $N=9$ and multi-rogue waves associated by deformation of parameters. The analytical expression corresponding to Peregrine breather is completely given.

NLS equationWronskianNonlinear Sciences::Exactly Solvable and Integrable Systems[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Fredholm determinantPeregrine breathers[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Riemann theta functionsPeregrine breathers.[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Nonlinear Sciences::Pattern Formation and Solitons
researchProduct